Farm Energy IQ

Farms Today Securing Our Energy Future

Biodiesel and Straight Vegetable Oil (SVO)

Chris Callahan, UVM Extension
Biodiesel and Straight Vegetable Oil (SVO)
Outline

• Overview of biodiesel and SVO – Why this matters
• Biodiesel vs. SVO
• Using SVO
• Using biodiesel
• What is B5, B20, and B100? And what should I use in my tractor?
• Equipment (engine) considerations when using biodiesel
• Making biodiesel
• Safety considerations for making and using biodiesel
• Crops for SVO or biodiesel
• Basic agronomics and economics biodiesel crops
• Related equipment needed to process the crops to oil and meal
Benefits of SVO and Biodiesel

Financial – cost of fuel
Planning – stable of cost of fuel
Efficiency – “energy return on investment”
Environmental – net carbon reduction

“A hundred years ago we all grew our own fuel.”
John Williamson
State Line Farm Biofuels, Shaftsbury, VT
The Biodiesel Process
Lots of places to “hop on” or “hop off”
The Biodiesel Process

Lots of places to “hop on” or “hop off”

Oil for use as SVO or for making biodiesel can be collected from restaurants

... or can be grown and pressed on-farm.
On-Farm Biodiesel Production from Oilseeds
Case Study: Six Vermont Farms

Volume of production

697 gallons

Hired

2,475

11,400
Making Biodiesel
Transesterification
Single Stage Base Method

So why are these different?
Straight Vegetable Oil (SVO) vs. Biodiesel

- **SVO**
 - Mono, di, or triglycerides
 - a.k.a. vegetable oil, fry oil, “grease”
 - Filtered and de-watered
 - Usually requires secondary tank and heaters for use in diesel vehicle

- **Biodiesel**
 - Mono alkyl esters, methyl esters
 - Refined oil, converted to “methylesters”
 - Lower viscosity, flows and sprays easier leading to better combustion
 - Lower gel and cloud point, better for winter use
What Should I Use in My Tractor?
Straight Vegetable Oil Overview

- May require engine modifications
- Oil heated to change the viscosity
- Start engine on petro-diesel fuel
- Shut down on petro-diesel fuel

Vegetable oils have high viscosity which may lead to injector coking and eventual engine failure.

Engine deposit buildups after running on straight soybean oil

Slide Credit: D. Schaufler, PSU – NewBio April 4, 2014.
Equipment Considerations - SVO

• Higher viscosity fuel
 – Requires heating
 – Switching between SVO and diesel

• Good spray and combustion can be challenging
 – Injector fouling
 – Impingement

• Requires supplemental fuel system
Viscosity and Fuel Performance

Vegetable oils have high viscosity which may lead to injector coking and eventual engine failure.

Slide credit: D. Schaufler, PSU – NewBio April 4, 2014
Engine deposit buildups after running on straight soybean oil

Slide credit: D. Schaufler, PSU – NewBio April 4, 2014
Kinematic Viscosity of Rapeseed Oil and Diesel Fuel

Rapeseed Oil
 „Triglyceride“

Diesel Fuel
 „Hydrocarbon Chains“

Graph showing the kinematic viscosity of rapeseed oil and diesel fuel as a function of temperature. The graph includes data points for cold pressed, superdegummed, refined, and diesel fuel.
Equipment Considerations - Biodiesel

• Material compatibility
 – Seal rubber can degrade in older materials
 – Current guidance: Teflon, Viton, and Nylon

• Quality assurance
 – Poor conversion of oil to biodiesel
 • Residual glycerin – clogging, poor combustion
 • Residual methanol – health hazard
 • Residual lye – caustic, corrosion
 – Field quality test kits are available
 – Lab tests are best for specific confirmation

• Some operators add an inline feed filter, and most carry a spare main filter for the unexpected clog
Biodiesel Blends

• “B5,” “B20,” and “B100”
 – Simple ways of referring to the concentration of biodiesel in a fuel blend
 – When 5% biodiesel is mixed into petroleum diesel it is called B5

• Why is it blended?
 • Cold weather properties
 • Cost balance
 • Emissions balance
 • Material compatibility
 • Solvent properties

– B20 is most common blend
What Should I Use in My Tractor?

• National Biodiesel Board hosts an OEM statement summary Chart: http://www.biodiesel.org/using-biodiesel/oem-information/oem-statement-summary-chart

• Generally B20 is recommended
 – Some OEM’s have fully embraced B100 and their design process focuses on this

• B100 has been successfully used in tractors in the Northeast through winter
 – Farm-based production; i.e., from sunflower and canola oil

• If purchasing, seek BQ-9000 certification: http://www.bq-9000.org/
Equipment Considerations - Biodiesel

• Material compatibility
 – Seal rubber can degrade in older materials
 – Current guidance: Teflon, Viton, and Nylon

• Quality assurance
 – Poor conversion of oil to biodiesel
 • Residual glycerin – clogging, poor combustion
 • Residual methanol – health hazard
 • Residual lye – caustic, corrosion
 – Field quality test kits are available
 – Lab tests are best for specific confirmation

• Some operators add an inline feed filter, and most carry a spare main filter for the unexpected clog
What Should I Use in My Tractor?

• Things to watch for...
 – Engine may run more quietly
 • Biodiesel has lubrication properties
 – May have reduced power
 • Biodiesel has lower Btu content per gallon
 • Generally 2% reduction in power, 3% reduction in fuel economy (B20)
 – Filters may clog more frequently
 • Generally because biodiesel is “kicking up” sediment in tanks
 • Can also be due to off-spec biodiesel
 – Cold weather gelling and poor flow can occur
 • Depends on feedstock
Safety Guidelines

- Penn State Guide
- Small scale
- Somewhat PA specific, but extremely helpful
- Best single source for this sort of info

http://pubs.cas.psu.edu/FreePubs/pdfs/agrs103.pdf
The main hazards are associated with the reactant and catalyst used in transesterification. Refer to material safety data sheets (MSDS’s) and always use proper personal protective equipment (PPE)
Safety Review of Process

- Codes and standards
- Material Safety Data Sheets
- Schematic Drawing
- Failure Modes and Effects Analysis (FMEA)
- Standard Operating Procedures (SOPs)
- Dry run
- Wet run
- First batch
PPE: Personal Protective Equipment

- Eyes
- Ears
- Mouth and nose
- Skin

Material safety data sheets (MSDS’s) for each material or chemical will provide guidance on proper PPE. Copies of MSDS’s for each chemical in use should be on-hand and easily accessible by all personnel.
PPE: Personal Protective Equipment

- Combustibility sensors
- Often makes sense to have two
 - One high above process
 - One low, within process
- Safety measure
- Quality measure
- Product shown
 - Industrial Test Equipment
 - HC-922 Multigas sensor
 - www.gasdetectorsinc.com
 - $220
SPCC: Spill Prevention, Containment, and Countermeasures

• In that order
• Prevention
 – FMEA
 – Maintenance
 – SOPs
 – Attention
• Containment
 – Structural
 – Early consideration
• Countermeasures
 – Specific to incident and site

http://www.epa.gov/oilspill/spcc.htm
Crops for SVO or Biodiesel
What are Oilseeds?

Grains and Oilseeds:

“Grains are identified as cereals suitable as food for human beings. Oilseeds are those grains that are also valuable for the oil content they produce.”

Soybeans
Canola
Sunflower
Camelina
Crambe
Flax
Mustard
Pennycress
Rapeseed
Safflower
Crop Production

• Recently published handbook for Northeast oilseed production

Oilseed Pressing Costs

Sunflower Seed
1 ton @ $338/ton (38% oil, 62% meal)

Pressing
(@ $2.36/ton)
Cost of Pressed Seed is $340/ton

Oil
0.38 ton oil per ton seed @ $129

Meal
0.62 ton meal per ton seed @ $211

Meal
@ $340 per ton
requires 1.61 ton seed

Oil
@ $340 per ton
requires 2.63 ton seed ($1.28/gal)
KernKraft 40 at Borderview Research Farm in Alburgh, VT.
“Screw “or “Worm” advances seed, pressing it against the backside of the die. Crushing it along the way. Oil and meal are separated by pressure.
Press Evaluation

• Evaluated six farm-scale presses using a common protocol on three oilseed crops
• Captured owner/operator feedback on press
• Measured
 – Press capacity at various speeds
 – Net oil yield at various speeds
 – Phosphorus at various speeds

Press Evaluation

General findings

– Operating a newly purchased press depends on a great deal of **trial and error**. Operators tips and tricks documented for each press.

– **Press capacity** depends on oilseed and is often different from published specifications

– **Max oil yield** is generally below maximum press capacity, and there is a peak in the mid-range of pressing rate (speed)

– **Phosphorus** in oil declines with pressing rate (speed)

Vermont On-Farm Biodiesel—Cost of Production and Breakeven

Economics and Breakeven of On-Farm Biodiesel Enterprises

- 2013 report explored 2 scales of farm-based production
- As with most farm operations, highly dependent on cost of crop production and yield
- Analysis is provided in step-by-step form
- Calculator is available to aid in assessing potential

Breakeven Pricing for Sunflower Products at Various Costs of Crop Production and Yield

<table>
<thead>
<tr>
<th>Recurring costs (of crop production)</th>
<th>1,000 pounds per acre</th>
<th>1,500 pounds per acre</th>
<th>2,000 pounds per acre</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100/acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>204</td>
<td>158</td>
<td>Seed, $/ton</td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>206</td>
<td>161</td>
<td>Meal, $/ton</td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>0.77</td>
<td>0.60</td>
<td>Oil, $/gallon</td>
<td></td>
</tr>
<tr>
<td>1.98</td>
<td>1.64</td>
<td>1.47</td>
<td>Biodiesel, $/gallon</td>
<td></td>
</tr>
<tr>
<td>1,974</td>
<td>1,316</td>
<td>987</td>
<td>Acres required</td>
<td></td>
</tr>
<tr>
<td>$150/acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395</td>
<td>271</td>
<td>208</td>
<td>Seed, $/ton</td>
<td></td>
</tr>
<tr>
<td>398</td>
<td>273</td>
<td>211</td>
<td>Meal, $/ton</td>
<td></td>
</tr>
<tr>
<td>1.49</td>
<td>1.02</td>
<td>0.79</td>
<td>Oil, $/gallon</td>
<td></td>
</tr>
<tr>
<td>2.36</td>
<td>1.89</td>
<td>1.66</td>
<td>Biodiesel, $/gallon</td>
<td></td>
</tr>
<tr>
<td>1,974</td>
<td>1,316</td>
<td>987</td>
<td>Acres required</td>
<td></td>
</tr>
<tr>
<td>$200/acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>337</td>
<td>258</td>
<td>Seed, $/ton</td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>340</td>
<td>261</td>
<td>Meal, $/ton</td>
<td></td>
</tr>
<tr>
<td>1.87</td>
<td>1.27</td>
<td>0.98</td>
<td>Oil, $/gallon</td>
<td></td>
</tr>
<tr>
<td>2.73</td>
<td>2.14</td>
<td>1.84</td>
<td>Biodiesel, $/gallon</td>
<td></td>
</tr>
<tr>
<td>1,974</td>
<td>1,316</td>
<td>987</td>
<td>Acres required</td>
<td></td>
</tr>
</tbody>
</table>

Note: Unless otherwise noted, all acreage above are net acres. These figures do not account for necessary rotation acres (4-5 x annual net oilseed acres), which will be necessary for sustained production as well as minimized pest and disease pressure. If the oilseed production is integrated with a diversified crop enterprise, this may not be a large factor in the operation.
State Line Farm
John Williamson - Shaftsbury, VT

Maple Sugar & Honey
formerly a Dairy Farm
Oil Seeds since 2005
Opterate at 2k gal/yr with ~300k gal/yr capacity

‘65 Massey-Harris SP35 at work

Biodiesel Samples, “Just like at the sugar house.”

Moisture tester

The “Bio-Barn” – Making use of gravity, the sun and shade.
State Line Farm
John Williamson - Shaftsbury, VT

Maple Sugar & Honey
formerly a Dairy Farm
Oil Seeds since 2005
Operate at 2k gal/yr with ~300k gal/yr capacity
Borderview Farm

Roger Rainville - Alburgh, VT

Crop Research Farm
formerly a Dairy Farm
Oil Seeds since 2005
Establishing ~150k gal/yr capacity

Presscake

Research combine

New grain dryer and storage bin. Biodiesel barn behind

Roger and his sunflowers

Meal pellet press

Oil press
Borderview Farm
Roger Rainville - Alburgh, VT

Crop Research Farm
formerly a Dairy Farm
Oil Seeds since 2005
Establishing ~150k gal/yr capacity
Biodiesel and SVO

Questions?

Chris Callahan
802-773-3349x277
chris.callahan@uvm.edu