Buying Electricity in a Time Differentiated Market

Introductions

Buying Electricity in a Time Differentiated Market

Topics for today’s discussion:
1. Definition of a time differentiated market
2. Deregulation background information
3. Electricity bill components
4. Identifying energy intensive applications
5. Methods of shifting energy use during the day
6. Estimating potential energy savings

Buying Electricity in a Time Differentiated Market

Learning Objectives:
1. Describe why electricity prices vary with time
2. Understand how electricity supply came to be deregulated
3. Understand day ahead pricing
4. Know how to monitor your farm electricity use

First, Some History

To help understand the present electricity market, we will take a quick peek into the past.

• Electric companies started out with a generator in a building in town
• They ran wires to whoever wanted electricity
• They bought fuel, operated generators, ran wires, metered electricity use, and sent bills; thereby providing “bundled” electric service to customers

More History

As electric service availability expanded, electric companies competed for new customers. The average cost to provide electric service rose as duplicate distribution facilities were built by the competitors. In an effort to control the cost of electric service, companies were granted exclusive service territories if they agreed to be regulated. Regulation of electric service was born!
Deregulation
Generally speaking, unregulated markets are more economically efficient than regulated markets. We still don’t want duplicate facilities though. They are expensive. To minimize costs, therefore, transmission and distribution remain regulated. Only the generation or supply is deregulated and treated as a “commodity” (in some states).

Buying Electricity in a Time Differentiated Market
- Electric deregulation unbundled (separated) the components of electric service and deregulated the generation (supply) component.
- A deregulated electric distribution company (EDC) does not own generation
- The EDC purchases electricity from suppliers and passes the cost directly to the end user

Electric Bill Components
- Distribution service – Operates at about 12,000 volts and delivers (distributes) the electricity to your neighborhood where the voltage is reduced for your use.
- Transmission service – Electric transmission usually occurs above 100,000 volts. It provides for the movement of electricity from the electric generation station (supply) to the region where the electricity is used.

Electric Bill Components
- Generation service – This is the actual production of the electricity. This is the ONLY part of your overall electric service that has been deregulated in some states. (See map, slide 13.) Generation service is acquired through an auction process conducted by the Independent System Operator (ISO) for resale to EDCs. You may also buy generation service from a supplier of your choice.

Electric Bill Components
Prior to deregulation, electric bill charges were “bundled”. That is, there was one energy charge on the bill which included energy charges related to electrical distribution, transmission, and generation. Demand charges were handled similarly. When deregulation was implemented, billing components had to be separated or “unbundled” so that customers could be billed correctly regardless of where they purchased their generation (supply).

Billing Changes due to Deregulation
Bundled Billing:
- Customer charge
- Demand charge (if applicable)
- Energy charge

Unbundled Billing:
- Customer charge
- Distribution charges
 - Demand
 - Energy
- Transmission charges
 - Demand
 - Energy
- Generation charges
 - Demand
 - Energy
Electric System
Supply - Transmission - Distribution

Status of Utility Deregulation by State

Deregulation Effects
The customer now has options! A customer can select their electric supplier.
- Select from a list of providers that generate and sell electricity, or
- Let the electric company buy it for you and bill you accordingly (the default for most customers)

Deregulation
Legislative goals
- Lower electric prices relative to regulated rates
- Create a competitive market with real choices of suppliers (generators)
- Encourage the availability of new products and services

Deregulation
The benefits of deregulation:
- Power plant construction cost overruns, refueling delays, environmental upgrade costs, and any operational inefficiencies become competitive costs
- Through the auction process, the most efficiently operated generation plants provide most of the energy while the least efficient generators may not provide any.

Buying Energy in a Time Differentiated Market
Time Differentiated Market:
“(Time-based pricing) is a pricing strategy where the provider of a service or supplier of a commodity, may vary the price depending on the time-of-day when the service is provided or the commodity is delivered. The rationale of time-based pricing is the expected or observed change of the supply and demand balance over time.”

Source: http://en.wikipedia.org/wiki/Time-based_pricing
The Language of Large Electric Use

- Generally, when you receive your electric bill, the electric load (demand) is expressed in kilowatts (kW).
- Your energy use is expressed in kilowatt-hours (kWh).
- For your electric company’s total load, megawatts (MW) are used (1,000 kW = 1 MW).
- For your electric company’s total energy, megawatt-hours (MWh) are used (1,000 kWh = 1 MWh).

The Billing Calculation

- Billing is not as complicated as it looks.
- For hourly pricing, your electric meter keeps track of your usage for each time period (hour).
- The EDC then calculates the supplier charges for each hour of the billing period and totals those charges. Customer, distribution and transmission charges (monthly charges) are added then added to the bill.
Day Ahead Prices for 3/31/2014

Peak was $92.42 for hour ended 8 a.m. The price applies to all energy metered in that hour.

Day Ahead Price Observations

- Yes, that is actual data from the Independent System Operator (ISO) for our region, PJM
- Links to data for New York and New England ISOs are on the references slide
- Our region is what used to be called Allegheny Power, now part of First Energy, consisting of West Penn Power, Monongahela Power and Potomac Edison
- For the example day in the previous slide, 7 a.m. to 10 a.m. is the most expensive period

Independent System Operators

Source: http://www.ferc.gov/default.asp

Assessing Electric Usage

Now let’s look at your electric meter:
- It works like the odometer in a car
- Read it now
- Read it again in an hour while keeping in mind what you are using electricity to operate in the mean time
- Subtract the first reading from the second and you will know how much electricity you used during that hour
- Keep a log of the information for future use
- Repeat for a day or two or when your electric use or the season changes

Sample Meter Log (Electric)

My electric data log (two days)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time ended</th>
<th>Reading</th>
<th>kWh difference</th>
<th>kWh per hour</th>
<th>Notes for that date & time</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Mar 14</td>
<td>12:00 AM</td>
<td>14554</td>
<td>0</td>
<td>0.3</td>
<td>a.m.</td>
</tr>
<tr>
<td>25 Mar 14</td>
<td>3:00 PM</td>
<td>14559</td>
<td>0</td>
<td>0.5</td>
<td>Pumped water to water troughs</td>
</tr>
<tr>
<td>25 Mar 14</td>
<td>6:00 PM</td>
<td>14567</td>
<td>0</td>
<td>0.3</td>
<td>Pumped water to water troughs</td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>3:00 AM</td>
<td>14572</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>6:00 AM</td>
<td>14585</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>9:00 AM</td>
<td>14595</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>12:00 PM</td>
<td>14616</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>3:00 PM</td>
<td>14630</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>6:00 PM</td>
<td>14641</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>9:00 PM</td>
<td>14650</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>12:00 AM</td>
<td>14664</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>3:00 AM</td>
<td>14674</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>6:00 AM</td>
<td>14685</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>9:00 AM</td>
<td>14702</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>12:00 PM</td>
<td>14717</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>3:00 PM</td>
<td>14730</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>6:00 PM</td>
<td>14743</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>9:00 PM</td>
<td>14756</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>26 Mar 14</td>
<td>12:00 AM</td>
<td>14768</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Total kWh usage: 1,346 kWh

Average kWh per day: 67.3 kWh

Electric Usage and Variable Pricing

- With (hourly) electric meter readings in hand, we can now combine the “when” and “how much” parts with the variable pricing effects for a meaningful comparison
- The example coming up is for one day. To do the calculation for an entire month is just more of the same.
- Once you get onto the comparison process, it isn’t very difficult
Suggest deleting this bullet point unless it is required to make a subsequent point.

Jeannie Sikora, 1/8/2015
Strategies to Reduce Your Bill

<table>
<thead>
<tr>
<th>Hour ended</th>
<th>AM 1</th>
<th>AM 1 $0.06</th>
<th>AM 2 $0.12</th>
<th>AM 2 $0.06</th>
<th>AM 2 $0.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
</tbody>
</table>

Strategies to Reduce Your Bill

<table>
<thead>
<tr>
<th>Hour ended</th>
<th>AM 1</th>
<th>AM 1 $0.06</th>
<th>AM 2 $0.12</th>
<th>AM 2 $0.06</th>
<th>AM 2 $0.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
</tbody>
</table>

Strategies to Reduce Your Bill

<table>
<thead>
<tr>
<th>Hour ended</th>
<th>AM 1</th>
<th>AM 1 $0.06</th>
<th>AM 2 $0.12</th>
<th>AM 2 $0.06</th>
<th>AM 2 $0.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>1</td>
<td>$0.06</td>
<td>$0.12</td>
<td>$0.06</td>
<td>$0.06</td>
</tr>
</tbody>
</table>

Strategies to Reduce Your Electric Bill

• In the above example, you want to avoid the pointy peak between about 6AM and 10 AM when the price per KWH is about three times the price per KWH for the rest of the day.
• Try to move your larger electric uses away from the peak periods.
• Take the time to do the research on your farm so you will know if shifting load is worth your while.

Summary

• Now you are aware of the hourly electricity market, how it came to be and when price peaks happen
• After doing an analysis of your own electric usage, with the help of your electric meter, you will know how much electricity you use when and for what purpose
• You can then compare your electric usage and peak prices to determine potential savings

References

Buying Electricity in a Time Differentiated Market

Questions?