Buying Electricity in a Time Differentiated Market

Introductions

Buying Electricity in a Time Differentiated Market

Learning Objectives:
1. Describe why electricity prices vary with time
2. Understand how electricity supply came to be deregulated
3. Understand day ahead pricing
4. Know how to monitor your farm electricity use

First, Some History
To help understand the present electricity market, we will take a quick peek into the past.
- Electric companies started out with a generator in a building in town
- They ran wires to whoever wanted electricity
- They bought fuel, operated generators, ran wires, metered electricity use, and sent bills; thereby providing “bundled” electric service to customers

More History
As electric service availability expanded, electric companies competed for new customers. The average cost to provide electric service rose as duplicate distribution facilities were built by the competitors. In an effort to control the cost of electric service, companies were granted exclusive service territories if they agreed to be regulated. Regulation of electric service was born!
Deregulation

Generally speaking, unregulated markets are more economically efficient than regulated markets. We still don’t want duplicate facilities though. They are expensive. To minimize costs, therefore, transmission and distribution remain regulated. Only the generation or supply is deregulated and treated as a “commodity” (in some states).

Buying Electricity in a Time Differentiated Market

- Electric deregulation unbundled (separated) the components of electric service and deregulated the generation (supply) component.
- A deregulated electric distribution company (EDC) does not own generation
- The EDC purchases electricity from suppliers and passes the cost directly to the end user

Electric Bill Components

Prior to deregulation, electric bill charges were “bundled”. That is, there was one energy charge on the bill which included energy charges related to electrical distribution, transmission, and generation. Demand charges were handled similarly.

When deregulation was implemented, billing components had to be separated or “unbundled” so that customers could be billed correctly regardless of where they purchased their generation (supply).

Billing Changes due to Deregulation

<table>
<thead>
<tr>
<th>Bundled Billing</th>
<th>Unbundled Billing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer charge</td>
<td>Customer charge</td>
</tr>
<tr>
<td>Demand charge (if applicable)</td>
<td>Distribution charges</td>
</tr>
<tr>
<td>Energy charge</td>
<td>Demand</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td></td>
<td>Transmission charges</td>
</tr>
<tr>
<td></td>
<td>Demand</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td></td>
<td>Generation charges</td>
</tr>
<tr>
<td></td>
<td>Demand</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
</tr>
</tbody>
</table>

Electric System

Supply - Transmission - Distribution

Status of Utility Deregulation by State

Map courtesy of QuantumGas.com
Deregulation

Legislative goals
• Lower electric prices relative to regulated rates
• Create a competitive market with real choices of suppliers (generators)
• Encourage the availability of new products and services

Buying Energy in a Time Differentiated Market

Time Differentiated Market:
“(Time-based pricing) is a pricing strategy where the provider of a service or supplier of a commodity, may vary the price depending on the time-of-day when the service is provided or the commodity is delivered. The rationale of time-based pricing is the expected or observed change of the supply and demand balance over time.”

Source: http://en.wikipedia.org/wiki/Time-based_pricing

The Language of Large Electric Use

• Generally, when you receive your electric bill, the electric load (demand) is expressed in kilowatts (kW)
• Your energy use is expressed in kilowatt-hours (kWh)
• For your electric company’s total load, megawatts (MW) are used (1,000 kW = 1 MW)
• For your electric company’s total energy, megawatt-hours (MWh) are used (1,000 kWh = 1 MWh)

The Billing Calculation for Real Time Pricing

West Penn Power (PA) Tariff, Page 36-1:

HP Energy Charge per HP

\[HP_{\text{Energy Charge per HP}} = \sum_{i=1}^{n} (\text{HP_Load} \times \text{HP_Price}) \]

Where:
- \(n \) = Total number of hours in the billing period
- \(t \) = An hour in the billing period
- HP_Load = The “Real Time” kW load-weighted average Localized Marginal Price for the APS Transmission Zone
- HP_Price = $0.03359 per kWh for all load sizes
- HP_Factor = Rate 25, 22, 24, and 30 (small), Rate 10 (large), Rate 44, 46, and 48

HP means Hourly Pricing. PJM is the Independent System Operator (ISO) for Pennsylvania, New Jersey, and Maryland

The Billing Calculation

• Billing is not as complicated as it looks
• For hourly pricing, your electric meter keeps track of your usage for each time period (hour)
• The EDC then calculates the supplier charges for each hour of the billing period and totals those charges. Customer, distribution and transmission charges (monthly charges) are added then added to the bill.

Buying Energy in a Time Differentiated Market

• Total electric load varies with time
• The price of electricity varies with load
• The next two slides show the load variation: one for a summer day; and one for a winter day
• The slide after that shows how the price of generating electricity varies with load
Electric Load Varies with Time (Summer)

Electric Load Varies with Time (Winter)

Cost Varies as the Load Varies

Day Ahead Prices for 3/31/2014

Day Ahead Price Observations

- Yes, that is actual data from the Independent System Operator (ISO) for our region, PJM
- Links to data for New York and New England ISOs are on the references slide
- Our region is what used to be called Allegheny Power, now part of First Energy, consisting of West Penn Power, Monongahela Power and Potomac Edison
- For the example day in the previous slide, 7 a.m. to 10 a.m. is the most expensive period

Peak was $92.42 for hour ended 8 a.m. The price applies to all energy metered in that hour.

Source: http://www.ferc.gov/default.asp

Independent System Operators

2/16/2015
Suggest deleting this bullet point unless it is required to make a subsequent point.

Jeannie Sikora, 1/8/2015
Assessing Electric Usage

Now let’s look at your electric meter:

• It works like the odometer in a car
• Read it now
• Read it again in an hour while keeping in mind what you are using electricity to operate in the mean time
• Subtract the first reading from the second and you will know how much electricity you used during that hour
• Keep a log of the information for future use
• Repeat for a day or two or when your electric use or the season changes

Electric Usage and Variable Pricing

• With (hourly) electric meter readings in hand, we can now combine the “when” and “how much” parts with the variable pricing effects for a meaningful comparison
• The example coming up is for one day. To do the calculation for an entire month is just more of the same.
• Once you get onto the comparison process, it isn’t very difficult

Strategies to Reduce Your Bill

Notes from the bottom of the previous table:

Total for day $2 $6.92 $5.77 $1.15

For 365 days $9,390 $2,786 $2,176 $2,318

Notes from above:
1. From your electric meter. Read it every hour and subtract the readings.
2. Fixed price. From your Electric Bill. Also known as the price to compare (PTC).
http://www.pennsurgeonswiki.com/shop-for-electricity/shop-for-your-

Strategies to Reduce Your Bill

Sample Meter Log (Electric)

My electric data log (two days)

<table>
<thead>
<tr>
<th>Date</th>
<th>Date ended</th>
<th>Reading kWh</th>
<th>kWh Difference</th>
<th>kWh per hour</th>
<th>Notes for that date & time</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Mar 14</td>
<td>3/26/14 10:30 AM</td>
<td>65133</td>
<td>0</td>
<td>0.3</td>
<td>Milking</td>
</tr>
<tr>
<td>21 Mar 14</td>
<td>3/25/14 10:30 AM</td>
<td>65090</td>
<td>16</td>
<td>0.6</td>
<td>Milking, heater water for cleaning</td>
</tr>
<tr>
<td>21 Mar 14</td>
<td>3/24/14 10:30 AM</td>
<td>65045</td>
<td>25</td>
<td>0.4</td>
<td>Pumped water in water trough</td>
</tr>
<tr>
<td>21 Mar 14</td>
<td>3/23/14 10:30 AM</td>
<td>65011</td>
<td>32</td>
<td>0.5</td>
<td>Pumped water in water trough</td>
</tr>
<tr>
<td>21 Mar 14</td>
<td>3/22/14 10:30 AM</td>
<td>64983</td>
<td>12</td>
<td>0.4</td>
<td>Pumped water in water trough</td>
</tr>
<tr>
<td>21 Mar 14</td>
<td>3/21/14 10:30 AM</td>
<td>64946</td>
<td>31</td>
<td>0.3</td>
<td>Pumped water in water trough</td>
</tr>
</tbody>
</table>

Average kWh per day 26.2

Strategies to Reduce Your Bill

• Know how and when you use electricity. Read your electric meter and record what equipment you used between readings.
• Check the day ahead electric prices periodically so you are aware of when prices are highest and lowest. This varies by season.
• Reschedule use of electric devices, where possible, to less expensive times of the day
• Keep in mind that peak price periods vary during the year
Strategies to Reduce Your Electric Bill

• In the above example, you want to avoid the pointy peak between about 6AM and 10 AM when the price per KWH is about three times the price per KWH for the rest of the day.
• Try to move your larger electric uses away from the peak periods.
• Take the time to do the research on your farm so you will know if shifting load is worth your while.

Summary

• Now you are aware of the hourly electricity market, how it came to be and when price peaks happen
• After doing an analysis of your own electric usage, with the help of your electric meter, you will know how much electricity you use when and for what purpose
• You can then compare your electric usage and peak prices to determine potential savings

References

Buying Energy in a Time Differentiated Market

Questions?