Resources from CenUSA – Sustainable Production and Distribution of Bioenergy for the Central USA

Sponsoring Partner

CenUSA-Logo
Funded by AFRI. Learn More.

 

 

 

CenUSA Bioenergy is a coordinated research and education effort investigating the creation of a regional system in the Central US for producing advanced transportation fuels from perennial grasses on land that is either unsuitable or marginal for row crop production. In addition to producing advanced biofuels, the proposed system will improve the sustainability of existing cropping systems by reducing agricultural runoff of nutrients in soil and increasing carbon sequestration.

CenUSA Bioenergy researchers from Iowa State University, Purdue University, University of Wisconsin, University of Minnesota, University of Nebraska, University of Illinois and the USDA Agricultural Research Service cover topics of interest to producers and growers in the following resources.  Learn more about the CenUSA Bioenergy Project.

CenUSA Bioenergy Learning Modules – Table of Contents

 

Module 1. Feedstock Development

CenUSA Feedstock Team Developing Improved Switchgrass Varieties

Fact Sheets

Research Summaries

Webinars

Instructional Video

FAQs (Frequently Asked Questions)

Journal Publications

  • Casler, M.D. (2014). Heterosis and reciprocal-cross effects in tetraploid switchgrass. Crop Sci. 54(5): 2063 . DOI: 10.2135/cropsci2013.12.0821.
  • Casler, M.D. & Vogel, K.P. (2014). Selection for biomass yield in upland, lowland, and hybrid switchgrass. Crop Sci. 54(2):626-636. DOI: 10.2135/cropsci2013.04.0239.
  • Dien, B. S., P.J. O’Bryan, R.E. Hector, L.B. Iten, R.B. Mitchell, N. Qureshi, S. Gautum, K.P. Vogel, & M.A. Cotta. 2013. Conversion of switchgrass to ethanol using dilute ammonium hydroxide pretreatment: influence of ecotype and harvest maturity. Environ. Technol. 34:13-14. DOI: 10.1080/09593330.2013.833640
  • Feng, Q., I. Chaubey, G.Y. Her, R. Cibin, B. Engel, J.J. Volenec & X. Wang. 2015. Hydrologic and water quality impacts and biomass production potential on marginal land. Environmental Modelling & Software. 72:230-238. http://dx.doi.org/10.1016/j.envsoft.2015.07.004
  • Jahufer, M.Z.Z. & M.D. Casler. 2014. Application of the Smith-Hazel selection index for improving biomass yield and quality of switchgrass. Crop Sci. 55(3):1212. doi: 10.2135/cropsci2014.08.0575.
  • Koch, K., R. Fithian, T. Heng-Moss, J. Bradshaw, J., G. Sarath, & C. Spilker. (2014). Evaluation of tetraploid switchgrass populations (Panicum virgatum L.) for host suitability and differential resistance to four cereal aphids. J. Econ. Entomol. 107(1):424-431. 2014. DOI: http://dx.doi.org/10.1603/EC13315
  • Koch, K., T. Heng-Moss, J. Bradshaw & G. Sarath, G. (2014). Categories of resistance to greenbug and yellow sugarcane aphid (Homoptera: Aphididae) in three tetraploid switchgrass populations. Bioenerg. Res. 7:909-918. DOI: 10.1007/s12155-014-9420-1
  • Koch, K., N. Palmer, M. Stamm, J. Bradshaw, E. Blankenship, L. Baird, G. Sarath, and T. Heng-Moss. 2014. Characterization of Greenbug Feeding Behavior and Aphid (Hemiptera: Aphididae) Host Preference in Relation to Resistant and Susceptible Tetraploid Switchgrass Populations. Bioenergy Research 8: 165-174.
  • Nichols, V.A., F.E. Miguez, M.E. Jarchow, M.Z. Liebman & B.S. Dien 2014. Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy. Bioenerg. Res. 7: 1550. doi: 10.1007/s12155-014-9494-9
  • Price, D.L. & M.D. Casler (2014). Divergent selection for secondary traits in upland tetraploid switchgrass and effects on sward biomass yield. BioEnergy Res. 7(1):329-337. doi: 10.1007/s12155-013-9374-8
  • Price, D.L. & M.D. Casler. (2014). Inheritance of secondary morphological traits for among-and-within-family selection in upland tetraploid switchgrass. Crop Sci. 54:646-653. doi: 10.2135/cropsci2013.04.0273
  • Price, D.L. & M.D. Casler. (2014). Predictive relationships between plant morphological traits and biomass yield of switchgrass. Crop Sci. 54(2):637-645. doi: 10.2135/cropsci2013.04.0272
  • Ramstein, G.P., J. Evans S.M. Kaeppler, R.B. Mitchell, K.P. Vogel, C.R. Buell & M.D. Casler. 2015. Accuracy of genomic prediction in switchgrass improved by accounting for linkage disequilibrium. G3: Genes, Genomes, Genet. 6(4):1049-1062. doi: 10.1534/g3.115.024950. http://g3journal.org/content/6/4/1049.full
  • Resende, R.M.S., de Resende,  M.D.V. & Casler, M.D. (2013). Selection methods in forage breeding: a quantitative appraisal. Crop Sci. 53:1925-1936.
  • Resende, R.M.S., Casler, M.D., & de Resende,  M.D.V. (2014). Genomic selection in forage breeding: Accuracy and methods. Crop Sci. 54:143-156.
  • Schaeffer, S., F. Baxendale, T. Heng-Moss, R. Sitz, G. Sarath, R. Mitchell, & R. Shearman. 2011. Characterization of the arthropod community associated with switchgrass Poales: Poaceae in Nebraska. J. Kans. Entomol. Soc. 84(2): 87-104. https://naldc.nal.usda.gov/download/54245/PDF
  • Serapiglia, M.J., A.A. Boateng, D.K. Lee & M.D. Casler. (2016). Switchgrass harvest time management can impact biomass yield and nutrient content. Crop Sci. 56(4):1970-1980. doi: 10.2135/cropsci2015.08.0527
  • Serapiglia, M.J., B. Dien, A.A. Boateng & M.D. Casler. 2016. Impact of harvest time and switchgrass cultivar on sugar release through enzymatic hydrolysis. BioEnergy Res. DOI: 10.1007/s12155-016-9803-6
  • Serapiglia, M.J., C.A. Mullen, A.A. Boateng, B. Dien & M.D. Casler. 2016. Impact of harvest time and cultivar on conversion of switchgrass to fast pyrolysis bio-oils. BioEnergy Res. (In review).
  • Slininger, P.J., B.S. Dien, C.P. Kurtzman, B.R. Moser, E.L. Bakota, S.R. Thompson, P.J. O’Bryan, M.A. Cotta, V. Balan, M. Jin, M.D. Sousa & B.E. Dale. 2016. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol. Bioeng. 113: 1676–1690. doi: 10.1002/bit.25928
  • Stewart C.L., J.D. Pyle, K.P. Vogel, G.Y. Yuen & K.G. Scholthof. 2015. Multi-year pathogen survey of biofuel switchgrass breeding plots reveals high prevalence of infections by Panicum mosaic virus and its satellite virus. Phytopathology 105:1146-1154. doi:10.1094/PHYTO-03-15-0062-R
  • Vogel, K.P., G. Sarath & R.B. Mitchell. 2014. Micromesh fabric pollination bags for switchgrass. Crop Sci. 54(4): 1621-1623. doi: 10.2135/cropsci2013.09.0647
  • Vogel, K.P.,  Mitchell, R.B., Casler, M.D. & G. Sarath. (2014). Registration of ‘Liberty’ switchgrass. J. Plant Registration 8:242–247. DOI: 10.3198/jpr2013.12.0076crc.Arrow Top

Module 2. Sustainable Feedstock Production

Fact Sheets

Research Summaries

CenUSA reserach.

CenUSA switchgrass trials at the University of Nebraska. Photo: F. John Hay, University of Nebraska Lincoln.

Webinars

Instructional Video

FAQs (Frequently Asked Questions)

Journal Publications

  • Archontoulis, S.V., I. Huber, F.E. Miguez, P.J. Thorburn & D.A. Laird. 2016. A model for mechanistic and system assessments of biochar effects on soils and crops and tradeoffs. GCB Bioenergy 8: 1028–1045. doi: 10.1111/gcbb.12314
  • Bakshi, S., D.M. Aller & D.A. Laird. 2016. Comparison of the physical and chemical properties of laboratory- and field-aged biochars. J. Environ. Qual. 45(5):1627-1634. https://www.researchgate.net/publication/301675850_Comparison_of_the_Phy… 10.2134/jeq2016.02.0062
  • Bonin C., Heaton E.A. & Barb J. (2014). Miscanthus sacchariflorus: biofuel parent or new weed? Global Change Biology Bioenergy. Article first published online: 31 JAN 2014 DOI: 10.1111/gcbb.12098.
  • Cibin, R., E. Trybula, I. Chaubey, S.M. Brouder & J.J. Volenec. 2016. Watershed scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. GCB Bioenergy 8(4):837-848. doi: http://doi.org/10.1111/gcbb.12307
  • Coulman, B., Dalai A., Heaton E.A., Lefsrud M., Levin D., Lemaux, P.G., Neale D., Shoemaker S. P., Singh J., Smith D.L. & Whalen J.K. (2013). Lignocellulosic biofuel feedstocks. BioFPR, 7, 582-601; invited submission.
  • Dierking, R.M., D. Allen, S.M. Brouder & J.J. Volenec. 2016. Yield, biomass composition, and N use efficiency during establishment of four Miscanthus × giganteus genotypes as influenced by N management. Biomass Bioenergy 91:98-107.  http://dx.doi.org/10.1016/j.biombioe.2016.05.005
  • Dowd, P.F., G. Sarath, R.B. Mitchell, A.J. Saathoff & K.P. Vogel. 2012. Insect resistance of a full sib family of tetraploid switchgrass Panicum virgatum L. with varying lignin levels. Genet. Resour. Crop Evol. 60(3):975-983. http://link.springer.com/article/10.1007/s10722-012-9893-8/fulltext.html. doi:10.1007/s10722-012-9893-8
  • Emerson, R., A. Hoover, A. Ray, J. Lacey, M. Cortez, C. Payne, D. Karlen, S. Birrell, D. Laird, R. Kallenbach, J. Egenolf, M. Sousek, and T. Voigt. 2014. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels. 5(3):275-291.
  • Feng, Q., I. Chaubey, G.Y. Her, R. Cibin, B. Engel, J.J. Volenec & X. Wang. 2015. Hydrologic and water quality impacts and biomass production potential on marginal land. Environmental Modelling & Software. 72:230-238. http://dx.doi.org/10.1016/j.envsoft.2015.07.004
  • Fidel, R.B., Laird, D.A., & Thompson, M.L. (2013). Evaluation of Modified Boehm Titration Methods for Use with Biochars. Journal of Environmental Quality. 42:1771-1778.
  • Fidel, R.B. 2015. Biochar properties and impact on soil CO2 and N2O emissions. Ph.D. diss., Iowa State University. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=5819&context=etd
  • Follett, R.F., K.P. Vogel, G. Varvel, Mitchell, R.B., & J. Kimble. 2012. Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. Bioenergy Res. 5(4):866-875. doi: 10.1007/s12155-012-9198-y
  • Graber, E.R., L. Tsechansky, R.B. Fidel, M.L. Thompson & D.A. Laird. 2016. Determining Acidic Groups at Biochar Surfaces via the Boehm Titration. In: B. Singh, M. Camps-Arbestain J. Lehmann, editors, Methods of Biochar Analysis. CSIRO Publishing, Melbourne, Chapter 8. (In press)
  • Heaton E.A., Schulte L.A, Berti M., Langeveld H., Zegada-Lizarazu W., Parrish D. & Monti, A. (2013). Integrating food and fuel: How to manage a 2G-crop portfolio. BioFPR. 7, 702-714; invited submission.
  • Johnson, J.M.F., D.L. Karlen, G.L., Gresham, K.B. Cantrell, D.W. Archer, B.J. Wienhold, G.E. Varvel, D.A. Laird, J. Baker, T.E. Ochsner, J.M. Novak, A.D. Halvorson, F. Arriaga, D.T. Lightle, A. Hoover, R. Emerson & N.W. Barbour. 2014. Vertical distribution of structural components in corn stover. Agriculture 4:274-287. doi:10.3390/agriculture4040274
  • Laird D.A., & Chang, C.W. (2013). Long-term impacts of residue harvesting on soil quality. Soil & Tillage Research. 134:33-40.
  • Mitchell, R., M. Schmer, B. Anderson, V. Jin, K. Balkcom, J. Kiniry, A. Coffin, A. & P. White. 2016. Dedicated energy crops and crop residues for bioenergy feedstocks in the Central and Eastern USA. BioEnergy Res. 9:384-398. doi: 10.1007/s12155-016-9734-2
  • Mitchell, R.B. & K.P. Vogel. 2016. Grass invasion into switchgrass managed for biomass energy. Bioenergy Res. 9(1):50-56. http://link.springer.com/article/10.1007/s12155-015-9656-4. doi:10.1007/s12155-015-9656-4
  • Ojeda, J.J., J.J. Volenec, S.M. Brouder, O.P. Caviglia & M.G. Agnusdei. 2016. Evaluation of Agricultural Production Systems Simulator APSIM as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments. GCB Bioenergy. doi: 10.1111/gcbb.12384
  • Orr, M.J., Gray, M.B., Applegate,B., Volenec,J., Brouder, S., & Turco, R. (2015). Transition to second generation cellulosic biofuel production systems reveals limited negative impacts on the soil microbial community structure. Applied Soil Ecology 95:62-72. DOI: 10.1016/j.apsoil.2015.06.002 (in press)
  • Owens V.N., Viands D.R., Mayton H.S., Fike J.H., Farris R., Heaton E.A., Bransby D.I. & Hong C.O. (2013). Nitrogen use in switchgrass grown for bioenergy across the USA. Biomass and Bioenergy. 58, 286-293.
  • Porter, P., R.B. Mitchell & K.J. Moore. 2015. Reducing hypoxia in the Gulf of Mexico: Reimagining a more resilient agricultural landscape in the Mississippi River watershed. J. Soil Water Conserv. 70(3):63A-68A. http://www.jswconline.org/content/70/3/63A.refs
  • Rogovska, N., D.A. Laird & D.L. Karlen. 2016. Corn and soil response to biochar application and stover harvest. Field Crops Res. 187:96-106. http://dx.doi.org/10.1016/j.fcr.2015.12.013
  • Rogovska, N., D.A. Laird, S.J. Rathke, and D.L. Karlen. 2014. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma. 230:340-347.
  • Serapiglia, M.J., A.A. Boateng, D.K. Lee & M.D.  Casler, M.D. 2016. Switchgrass harvest time management can impact biomass yield and nutrient content. Crop Sci. 56(4):1970-1980. https://dl.sciencesocieties.org/publications/cs/abstracts/56/4/1970. doi: 10.2135/cropsci2015.08.0527
  • Sindelar, A., M. , M. Gesch, F. Forcella, C. Eberle, M. Thom & D. Archer. 2015. Winter oilseed production for biofuel in the U.S. Corn Belt: Opportunities and limitations. GCB Bioenergy. doi: 10.1111/gcbb.12297
  • Trybula, E.T., R. Cibin, J.L. Burks, I. Chaubey, S.M. Brouder & J.J. Volenec. 2014. Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement. GCB Bioenergy, 7: 1185–1202. doi: 10.1111/gcbb.12210
  • Vogel, K.P., G. Sarath & R.B. Mitchell. 2014. Micro-mesh fabric pollination bags for switchgrass. Crop Sci. 54:1621-1623.  doi: 10.2135/cropsci2013.09.0647
  • Vogel, K.P., Mitchell, R.B., Casler, M. D. & Sarath, G. (2014). Registration of ‘Liberty’ switchgrass. Journal of Plant Registrations (accepted 25 Feb., 2014).
  • Waramit, N., Moore K.J. & Heaton E.A. (2013). Nitrogen and harvest date affect developmental morphology and biomass yield of warm-season grasses. Global Change Biology Bioenergy. Article first published online: 29 AUG 2013, DOI: 10.1111/gcbb.12086
  • Woodson, P., S.M. Brouder & J.J. Volenec. 2013. Field-scale potassium and phosphorus fluxes in the bioenergy crop switchgrass: Theoretical energy yields and management implications. J. Plant Nutr. Soil Sci. 176:387-399. http://onlinelibrary.wiley.com/doi/10.1002/jpln.201200294/abstract. doi:10.1002/jpln.201200294

Proceedings

  • Mitchell, R.B. (2013) Establishing and managing perennial grasses for bioenergy. Proc. 25th Annual Integrated Crop Management Conference, Iowa State University, pp. 49-51. 2013.
  • Mitchell, R.B., & Schmer, M.R. Switchgrass for biomass energy. Proc. Nebraska Crop Production Clinic Proceedings, University of Nebraska, pp. 13-16. 2014.

Abstracts

  • Dierking, R.M., Volenec, J.J. & Murphy, P.T. (2013). Forage yield and quality of Miscanthus giganteus subjected to simulated haying/grazing conditions. Abstract 245-5. Inter. Meeting of the Amer. Soc. Agron.-Crop Sci. Soc. of Amer.-Soil Sci. Soc. of Amer. Nov. 2-6, Tampa, FL.
  • Long, M.K., Volenec, J.J. & Brouder, S.M. (2013). Theoretical ethanol yield for potential bioenergy sorghum genotypes of differing compositions. Abstract 373-9. Inter. Meeting of the Amer. Soc. Agron.-Crop Sci. Soc. of Amer.-Soil Sci. Soc. of Amer. Nov. 2-6, Tampa, FL.Arrow Top

Module 3. Feedstock Logistics: Harvest & Storage

CenUSA Feedstock Logistics: Innovative Systems for Harvest, Transportation, and Storage of Perennial Grass Biomass

Fact Sheets

Webinars

Instructional Video

Technical Papers

See http://agriculturalmachineryengineering.weebly.com/technical-papers.html

  • De Souza, A., Birrell, S.J., Steward, B.L & S. Ksketri. 2015. Moisture Content and Bulk Density Prediction Using Dielectric Properties for Switchgrass and Corn Stover. ASABE Paper No. 2160026, Am. Soc. of Agric. Engineers, St. Joseph, MI. doi:10.13031/aim.20152160026 
  • Khanchi, A. & S.J. Birrell. 2015. Influence of weather and swath density on drying characteristics of corn stover. ASABE Paper No. 2190753. 2015 ASABE Annual International Meeting Am. Soc. of Agric. Engineers, St. Joseph, MI. doi: 10.13031/aim.20152190753. St. Joseph, Mich.: ASABE.
  • Lacy, N.C. & K.J. Shinners. 2016. Reshaping and recompressing round biomass bales. Trans ASABE. 59(4):795-802. doi:10.13031/trans.59.11778.
  • Shinners, K.J. & Friede, J.C. (2013). Improving the drying rate of switchgrass. ASABE Technical Paper No. 1591968.
  • Shinners, K.J. & Friede, J.C. (2013). Energy requirements for at-harvest or on-farm size-reduction of biomass. ASABE Technical Paper No. 1591983.
  • Shinners, K.J. & Friede, J.C., & Kraus, J. & Anstey, D. (2013). Improving bale handling logistics by strategic bale placement. ASABE Technical Paper No. 1591987.

FAQs (Frequently Asked Questions)

Journal Publications

  • Karlen, D.L., J.L. Kovar, S.J. Birrell. 2015. Corn Stover Nutrient Removal Estimates for Central Iowa, U.S.A. Sustainability 2015 7(7): 8621-8634. http://www.mdpi.com/2071-1050/7/7/8621. (Open Access)
  • Khanchi, A. & S.J. Birrell, 2017. Effect of rainfall and swath density on dry matter and composition change during drying of switchgrass and corn stover. Biosystems Engineering 153:42-51.
  • Sharma, B., E. Brandes, A. Khanchi, S. Birrell, E. Heaton & F. E. Miguez. 2015. Evaluation of Microalgae Biofuel Production Potential and Cultivation Sites Using Geographic Information Systems: A Review. BioEnergy Res. 8(4):1714–1734. doi: 10.1007/s12155-015-9623-0
  • Williams,S.D. and K.J. Shinners. 2014.   Farm-scale anaerobic storage and aerobic stability of high dry matter perennial grasses as biomass feedstock.  Biomass & Bioenergy. 64:91-98.Arrow Top

Module 4. System Performance: Economics, Environment, Modeling, Analysis and Tools

AgSolver Decision Making

AgSolver’s Field Report Card for Muth Stock Farms. Photo: AgSolver.

CenUSA Models Predict Large Water Quality Improvements from Perennials

Case Study

Fact Sheets

Research Summaries

Curriculum

Webinars

Instructional Video

FAQs (Frequently Asked Questions)

Journal Publications

  • Schmer MR, Vogel KP, Varvel GE, Follett RF, Mitchell RB, et al. (2014) Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland. PLoS ONE 9(3): e89501.  DOI: 10.1371/journal.pone.0089501
  • Schilling, K., Gassman, P., Kling, C. T. Campbell, M. Jha, C. Wolter, & J. Arnold. (2103). The Potential for Agricultural Land Use Change to Reduce Flood Risk in a Large Watershed. Hydrological Processes (2013), wileyonlinelibrary.com, DOI: 10.1002/hyp.9865.
  • Rabotyagov, S., Kling, C.L., Gassman, P., Rabalais, N. & Turner, R. (2014). The Economics of Dead Zones: Causes, Impacts, Policy Challenges, and a Model of the Gulf of Mexico Hypoxic Zone. Review of Environmental Economics and Policy, published online Jan. 5, 2014 DOI:10.1093/reep/ret024
  • Keeler B., Krohn, B., Nickerson, T. & Hill, J. (2014). U.S. Federal agency models offer different visions for achieving Renewable Fuel Standard (RFS2) biofuel volumes. Environ. Sci. Technol. (2013) 47: 10095–10101. DOI: 10.1021/es402181y. (Cover Feature)
  • Panagopoulos, Y., Gassman, P., Arritt, R., Herzmann, D., Campbell, T., Jha, M., Kling, C.L., Srinivasan, R., White, M. & Arnold, J. (2014). Surface Water Quality and Cropping Systems Sustainability under a Changing Climate in the Upper Mississippi River Basin. Journal of Soil and Water Conservation 69:483-494. DOI: 10.2489/jswc.69.6.483.
  • Rabotyagov, S., Valcu, A. & Kling, C.L. (2014). Reversing the Property Rights: Practice-Based Approaches for Controlling Agricultural Nonpoint-Source Water Pollution When Emissions Aggregate Nonlinearly. American Journal of Agricultural Economics 96 (2): 397-419. DOI 10.1093/ajae/aat094.Arrow Top

Module 5. Feedstock Conversion and Biofuels Co-Product

CenUSA Feedstock Conversion, Refining and Co-Products – Ryan Smith

Case Study

Fact Sheets

Research Summaries

Webinars

Instructional Video

Journal Publications

  • Recent Publications About Biochar
  • Allen, R.M. & Laird, D.A.  (2013). Quantitative prediction of biochar soil amendments by near-infrared reflectance spectroscopy. Soil Science Society of America Journal. 77:1784-1794.
  • Brown, T. R., Thilakaratne, R., Brown, R. C., & Hu, G. (2013). Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel 106, 463–469, http://dx.doi.org/10.1016/j.fuel.2012.11.029.
  • Brown, T. & Brown, R. C. (2013). A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels, Bioproducts & Biorefineries 7, 235-245. DOI: 10.1002/bbb.1387.
  • Brown, T. & Brown, R. C. (2013). Techno-economics of advanced biofuels pathways. Royal Society of Chemistry Advances 3 (17), 5758 – 5764, DOI: 10.1039/C2RA23369J.
  • Fidel, R.B., Laird, D.A. & Thompson, M.L. (2013). Evaluation of Modified Boehm Titration Methods for Use with Biochars. Journal of Environmental Quality. 42:1771-1778.
  • Kauffman, N., J. Dumortier, D.J. Hayes, R.C. Brown, and D.A. Laird. 2014. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass and Bioenergy. 63:167-176.
  • Thilakaratne, R., Brown, T., Li, Y., Hu, G., & Brown R.C. (2014). Mild catalytic pyrolysis of biomass for production of transportation fuels: a techno-economic analysis. Green Chemistry, DOI: 10.1039/C3GC41314D.
  • Zhang, Y., Hu, G., & Brown, R. C. (2013). Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis. Environ. Res. Lett. 8, 025001 doi:10.1088/1748-9326/8/2/025001.Arrow Top

Module 6. Markets and Distribution

Emerging newly planted switchgrass on a rolling Tennessee landscape.

Emerging newly planted switchgrass on a rolling Tennessee landscape. Photo: University of Tennessee.

Fact Sheet

Research Summary

Webinars

Instructional Video

FAQs (Frequently Asked Questions)

    Journal Publications

    • Kauffman, N., Dumortier, J., Hayes, D.J. Brown, R.C. & Laird, D.A. “Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Forthcoming in Biomass and Bioenergy.
    • Kauffman, N. & Hayes, D. (2013)The Trade-off between Bioenergy and Emissions with Land Constraints. Energy Policy 54, 300-310, 2013.
    • Jacobs, K. Perennial Grasses for Bioenergy in the Central United States: Updates on Economics and Research Progress. 2013 ICM Conference Proceedings, Iowa State University.Arrow Top

    Module 7. Health and Safety

    Switchgrass baling

    Switchgrass baling on steep marginal land presents a rollover hazard. Photo: Douglas Schaufler, Penn State.

    Fact Sheets

    Webinar

    Video

    Research Summary

    Journal Publications

    • Schaufler, D. H., Yoder, A.M., Murphy, D. J., Schwab, C.V. & Dehart. A.F. Safety and Health Hazards in On-Farm Biomass Production & Processing. (2014). ASABE Journal Agricultural Safety and Health.
    • Yoder, A.M., C. V. Schwab, P. D. Gunderson, and D. J. Murphy. 2013. Safety and Health in Biomass Production, Transportation and Storage. Journal of Agromedicine. DOI: 10.1080/1059924X.2014.886539.
    • Ryan, S. J., C. V. Schwab, and G. A. Mosher. 2015. Development of a probabilistic risk assessment model to measure the difference in Safety risk of corn and biofuel switchgrass farming systems. Journal of Agricultural Safety and Health (Submitted).

    Technical Papers

    • Ryan, S. J., C. V. Schwab, and G. A. Mosher. 2015. Agricultural Risk: Development of a probabilistic risk assessment model for measurement of the difference in risk of corn and biofuel switchgrass farming systems. International Society for Agricultural Safety and Health summer conference Bloomington-Normal, Illinois. ISASH Paper No. 15-01. ISASH Urbana, IL 61801.
    • Yoder Aaron M., D.J. Murphy, and A.F. DeHart. 2013. A Technical Review on Safety in On-Farm Biomass Production and Storage Systems: Status and Industry Needs.  American Society of Agricultural and Biological Engineers. Technical Paper No. 1620568.Arrow Top

    “Formal” Educational Programs and Curriculum

    In order to prepare the next generation of workers for the emerging bioeconomy, CenUSA is providing interdisciplinary training and engagement opportunities for undergraduate and graduate students; and developing a bioenergy curriculum core for the Central region of the United States.

    Flowchart Biochar production

    Flowchart: David Laird, Iowa State University.

    Extension Programs

    CenUSA Extension and Outreach: Perennial Grass Bioenergy Research and Knowhow for Producers, Students and Stakeholders

    Archived CenUSA Webinars


    Biochar Demonstration – Extension Master Gardener reports

    CenUSA Social Media: Newsletter, Facebook, Twitter


    BLADES Newsletter – your source for the latest information on grass-based bioenergy research, policy and industry breakthroughs, innovative educational programs and upcoming events.

    Facebook

    Twitter @ cenusabioenergyArrow Top

    CenUSA Bioenergy Resources by MediaType

    (same resources as above, but organized by type)

    Fact Sheets, Guides and Articles

    Research Summaries & Case Studies

    Ask an Expert logo

    FAQs (Frequently Asked Questions)


    Archived Webinars

    Instructional Video

       Sustainability in Bioenergy: A Nation Connected  – US Department of Energy

       Link to the CenUSA Vimeo Site; Link to the CenUSA YouTube Site

        Midwest Bioenergy Outreach Videos

     

    Classroom Curriculum – see aboveArrow Top

     

    CenUSA Bioenergy Overview

     

    CENUSA Bioenergy logo

    CenUSA is supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30411 from the USDA National Institute of Food and Agriculture.

    USDA and NIFA logos